自动识别抓取机器人视觉
为了完成机器人的抓取任务,机器人首先需要感知物体
2023-08-30 10:56:00 尹尔斯工业智能科技(南京)有限公司
为了完成机器人的抓取任务,机器人首先需要感知物体。随着传感器设备的不断发展,目前的机器人都配备了RGB摄像机和深度摄像机来获取丰富的环境信息。然而,原始的RGB-D图像对于机器人来说是简单的数字网格,在那里需要提取高层次的语义信息来实现基于视觉的感知。要抓取的目标对象的高层信息通常包含位置、方向和抓取位置。然后计算抓取规划以执行物理抓取。赋予机器人感知能力一直是计算机视觉和机器人学科的一个长期目标。机器人抓取不仅意义重大,而且早已被研究。机器人抓取系统由抓取检测系统、抓取规划系统和控制系统组成。其中,抓取检测系统是关键的入口点,它分为三个任务:目标定位、姿态估计和抓取点检测。结合抓取规划,详细介绍四项任务。
早期的方法假设要抓取的对象被放置在一个背景简单的干净环境中,从而简化了对象定位任务,而在相对复杂的环境中,它们的能力相当有限。一些目标检测方法利用机器学习方法对基于手工二维描述符的分类器进行训练。但是,由于手工创建的描述符的限制,这些分类器的性能有限。近年来,深度学习已经开始主导图像相关的任务,如目标检测和分割。此外,从RGB图像到深度图像的训练数据,以及二维或三维输入的深度学习网络,极大地提高了目标定位的性能,促进了机器人抓取技术的发展。利用目标物的位置,可以进行抓取检测。早期的分析方法是直接分析输入数据的几何结构,根据力闭合或形状闭合来寻找合适的抓取点。然而,分析方法存在着费时、计算困难等问题。随后,随着大量三维模型的出现,可以分析数据驱动的方法,将三维模型数据库中的抓取转移到目标对象。
机器人自动抓取技术是面向工业领域的多关节机械手或多自由度的机器技术,它能自动执行工作,是靠自身动力和控制能力来实现各种功能的一种机器技术。...
尹尔斯为大家总结了一些柔性振动盘日常运作会出现的问题及处理这些问题的办法。
尹尔斯柔性振动盘为一些常见的传统振动盘无法解决的上料问题提供了解决方案。
柔性振动盘可以实现将多个产品放入料盘中上料,可以提高上料效率。