机械臂智能抓取涉及什么技术
对于机械手而言,不同形状的物品,抓取难度有天壤之别。即便是同样形状的物体,由于表面反光度和环境光照的影响,在不同场景的抓取难度也大相径庭。
2023-11-24 11:30:53 尹尔斯工业智能科技(南京)有限公司
目前几种主流的解决方案
Model-based(基于模型的方法)
这种方法很好理解,即知道要抓什么,事先采用实物扫描的方式,提前将模型的数据给到机器人系统,机器在实际抓取中就只需要进行较少的运算:
1. 离线计算:根据搭载的末端类型,对每一个物体模型计算局部抓取点;
2. 在线感知:通过RGB或点云图,计算出每个物体的三维位姿;
3. 计算抓取点:在真实世界的坐标系下,根据防碰撞等要求,选取每个物体的较佳抓取点。
RGB颜色空间由红绿蓝三种基本色组成,叠加成任意色彩,同样地,任意一种颜色也可以拆解为三种基本色的组合,机器人通过颜色坐标值来理解“颜色”。这种方式与人眼识别颜色的方向相似,在显示屏上guangfan采用。
Half-Model-based(半模型的方法)
在这种训练方式中,不需要完全预知抓取的物体,但是需要大量类似的物体来训练算法,让算法得以在物品堆中有效对图像进行“分割”,识别出物体的边缘。这种训练方式,需要这些流程:
1.离线训练图像分割算法,即把图片里的像素按物体区分出来,此类工作一般由专门的数据标注员来处理,按工程师的需求,标注出海量图片中的不同细节;
2.在线处理图像分割,在人工标注出的物体上,寻找合适的抓取点。
这是一种目前应用较为guangfan的方式,也是机械臂抓取得以推进的主要推力。机械臂技术发展缓慢,但计算机视觉的图像分割则进展迅速,也从侧面撬动了机器人、无人驾驶等行业的发展。
对于机械手而言,不同形状的物品,抓取难度有天壤之别。即便是同样形状的物体,由于表面反光度和环境光照的影响,在不同场景的抓取难度也大相径庭。
机器人自动抓取技术是面向工业领域的多关节机械手或多自由度的机器技术,它能自动执行工作,是靠自身动力和控制能力来实现各种功能的一种机器技术。...
尹尔斯为大家总结了一些柔性振动盘日常运作会出现的问题及处理这些问题的办法。
尹尔斯柔性振动盘为一些常见的传统振动盘无法解决的上料问题提供了解决方案。
柔性振动盘可以实现将多个产品放入料盘中上料,可以提高上料效率。